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Brief Summary of Cosmology

Cosmology begins with two primary assumptions:

1. The universe is homogenous—the same everywhere
2. The universe is isotropic—the same in every direction

This is called the Cosmological Principle. (The
two do not imply one another).

In other words, we are not in any special place
in the universe. Note that this is applicable to
the universe on the grand scale, and therefore
large-scale approximations hold well for our
observations. It is on a scale larger than 250
million light years
(https://en.wikipedia.org/wiki/Cosmological
principle), or sometimes considered
approximately 100 Mega-parsec (1 parsec =
3.26 light years). On the smaller scale, galaxy
clusters do look different because matter is not
uniformly distributed.

The Universe on a large scale (http://www.sun.org/images/structure-
of-the-universe-1
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Hubble’s Constant is a proportionality parameter. It is believed to be a constant in space
but is time variant as the expansion rate of the universe changes.

Itis given as: H(t) = v/r where v is the velocity and r is the distance. The current time is the
age of the universe at t, = 13.7 billion years. The Hubble constant is commonly written as

H, = 100h in which the measured value of today is approximately .72 plus/minus .08 (it
changes as the universe has a varying expansion rate).

Scale factor measures the universe’s expansion rate. It shows us how physical distances
are growing in time.

It is defined given by 7 = a(t)X where X is the comoving distance and 7 is the physical
distance. In other words, the comoving distance is the assigned (fixed) coordinate of the

galaxy, and as space expands (represented by the scale factor) the comoving distance stay
the same but the physical distance increase. (See image below).
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Now we see:
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Arguably the most important equation in cosmology is the Friedmann Equation:

Hz_(d>2_8nG k , Ac
“\a/ 3 a? 3

Note: ¢ = 1 (speed of light is a constant commonly set to 1); a, = 1 (the scale factor of today); k
=-1,0, +1; G is the gravitational constant 6.67*10-1 m3 kg1 s-2

p represents the mass density, while k represents the curvature of the universe with three
possible geometries: “Open”, “flat” or “closed” which follows hyperbolic, Euclidean or
spherical geometry, respectively. Also A represents the quantity, which seems to cause the
universe to accelerate in its expansion—the so-called dark energy is associated with this
term. Overall it describes the expansion of the universe.

The Fluid Equation looks at the p value in the Friedmann Equation. This value represents
the density of material in the universe, and how it evolves with time. It is given below:

5 +3 d( + P) =0
P a\P T 2) =
Note: p = Z—’t) ; P is the pressure of the material

The Acceleration Equation describes the acceleration of the scale factor. It is given as:

d_ 4nG( +3P>+A
a 3 P c? 3

Observations

. : . k | Ac .
Given the Friedmann Equation—H? = %p -+t ?C —ifwesetk = A =0 we can

rearrange the equation solving for rho. This is called the critical density:

3H?

Pc (t) = 817G

The Density Parameter is a dimensionless quantity, which is useful for specifying the
density of the universe. Given by:

p(t)

o0 =0

Where p.(t) is the amount of energy required for flatness of a universe while the
numerator is the amount of energy in the universe. This relationship is observed today to
be 1.005 * 0.007 indicating an almost-flat universe.



Newtonian Mellod

<SS

F;iealmanh Ei ucd':'On | D e f/’\/a*"o"l

Suppose  we heave o Un, form Q_x'q.nJinj mecfiom St paess Mlbi;’/“"'f

S)n% M—v_' COS WQIOU;CQ/( F/:ﬂ(t‘la,c 5‘7‘ Mﬁb. M/’VU% ;8 #"- SGme
- evergubere,  copgicler ang  peint fo he s center

Conslder o Pwﬂclg_ J's'/‘a_nct rwug with Acess w
H

Newten's  Theoyem
T —
To spherically spmmetvic  distibution
o tmatter | o pepticle feels o
(vee oF Jreaj'er redir,
Frthermore | medesial o3 Eniclles

rad:, 37V’> %4&'{7 e folce
which one woul Experience * it

By Neuwton's Theo re.m He particle oaly Al meteriel wey concentrateaf
feels, folee £rom materied G spollev ,Q/,"‘. ad  He ceptal pont,
Material ‘\«s‘. .M

TR MV L)y

o : |
Low op Gtawltatioy ; F= GHpm _ G(—‘lﬂ“ﬁp)m = 4ﬂ'6:rmf

C—raul'l'cd'ion&,d— Po'fe.nﬂa,q
st - O V== G—fm = = G‘C%l‘.ra?)"‘: - Grime

Kinelic Cuner
k 74 fwf;def T= gmy?= é-m@i‘.f) =L, i (.: . dertvedive of
- t a position ovey -ﬁme/

COHS@N&T‘M oF fnery(y : ET°TAL_: U = T+\ = aim;l + /— Hr Gf_m7
3



Newtonian  Meflocl

M2 SS

F”"ﬁc{manh Eiuqﬁ’ﬂﬂ 'Dcr}\/aﬁorz

; / s < Hans/ =
Supprse  we  have a un, form gx'om‘j/nj e of i o maess /:’7 . :/w

S)n% e (osmofoa;‘cw{ /ﬁnc«',dt 5a7$ el whiverse iy Ha Scme
- evergubere,  copgicler ang peint fo he s center

Consleler o ,owﬁd(, J'S'/“Q—V»q, reuwag_ w i/t hee3S g,
|

Newts Theorer
Tn gphev, c.a”d Symmetvic  distibation
of ha‘ﬂzrl @ pevticle feels po
(vee oF Jre,cj‘er radir,
Furthermore, madestal o snelle,
rad:, gva e,uuﬂ'{j He force

83 Newton's TAQOIQ-M. He pavticle on/y i” mederiod wey concepitrateaf
feels toree from mateded & snaller mli | o He cemtrat point
Mcterial hees : M

?=—;\—7—- =3 M: (V’(_é‘L”rB)?

0 |ow s G-MA/H‘Rf"Oﬂ‘ F= GHMp _ G[_‘lm%(:)m - LHTG:rmF

Grewited: iona.»d— Po'fe.nﬂaﬁ
Energy: \/= - G-:fm - G(_—‘é—l\-ﬂp)m: -4 Grime

; ;G. C L 4 e
e "4 ;ﬁ—vh’de : T= émv’*: -LMG‘..!') =Lmrd (r = derlvedive of \
i a position ovey -Hme/

ot o Gogy £ < U= Tey . Lo o =5
3



= flow we utaduce comovia quogsl.‘nu*b’s f L concdinale gestem

R T T e

"ulﬂ}‘-'"' word;ﬂﬂfe5 arse CCNV/)’CC} a,qnj ‘wn 7‘LL pra.lﬂs)‘gn

We sre alowed ko Jo is since Ha

Univervse /o how o gceoys. | ,' ] i
’ 3 g 3 :
& "9=P (3,.13
SN

Smee. &ﬂ ans :'Gn S s I F i m/ w L“‘) e ' ‘ ‘ 2§ "‘“l;’“‘" I S —
- =3 -> !
v = @ (t) %X o= Fj#Slcal J&f‘-ﬁ(q I

? = cavnovinj J@ﬂn@

alt) = scale fq&bf

| o 1 2 3 4
¥ obove © coordinate systen:
e some 6 physical ditance

- ’
K e e kel uched o e gulayes el

J ==
wrveram

v He Pl’lJS)cu—e ds"“?‘(./ ?efs ()Wer v ﬁ"t(. Since He wL)o/g,
Usin : " Cf.er/’n )Lc / A
J His e rewrr) e 5“”}7 Cohgﬂ-/alcd?on . &« 7""‘/ xpandsg ,

/
=z L =) o - r X
U= fmlGnz)?]’ - Weem[ai] %77 57 dCO%)_ 2y

| dt
] Ja_'” At — HT Cem adx? OV.JV wole fador Showges .
e M Fime 5‘6 , : a
, / 3 ) % f"“‘ﬂ"f“\o‘gﬂm f‘/
my It y il ; .
Sl both sicles lzj A (ﬁa 150l ede. a - feyms )z
QU /"2// / *
e g A feln - 2 _ /4
Mmadx 2 matx® C""’Mq Xz) M( W&;M
QU a* o gmGp
mx? g 2 a 3
*
=2 . grép QU | det  fea= —2U
= 5 +Glaa - it
¥X Is inclepenclen F oF X ond
@ a O{_ f;n.c (Sl'l% qu c#@)’
= (;%) = g.’& ( - KCa» trms o r;/A} sieke e )
3 a? v K= constent




Fluid € uedion  Devivefion

/5*{,{—&4,0 of- ,r&rmoaépna.mfc&l Conx,e,«/e,&ion of 6’“—7‘?(}’
T dE 4 PdV - T &

en..;/' N T T éﬂﬁoﬂ%
7f / voluss Tl_mper«‘.’fka/&
Pregongs
M ass = «
of buld —rrr3) P density = T
VOIW |
E=wmr
v ("— ,-,,.3(9) C , how r = e (e) <scahe /“LCT°V>‘
AE
) ——= 4 rea 2
Ve Tl R A v Lnala) b e des
At
. AV 2
W 2 o 4map) de e o
( gy alt) v Crafe of wlune J«*—hygk
ucimy (1) b red or off dE = -qs—rrc}qu,sz-f %fTClc‘&Be'
< —;-Ln‘(} (3&%{?-;- @3@) i J,,Jm
uS?nj([,’)/ W oy of 4[—; , m»}eﬁbjsygﬁ
= ° 9
AV = 4r a P of(a" Aeﬂezj
Use 1 oot dE+ Pay = 7uc . For isolated, adiabdic) L
eX panSion of Vo/we
= 4 ; . : =
77 (3cap 1 23¢) + P(Ypis) = o At =S

- Lap ¢ 2 4 .
2 pad L 4 atdpct 4 Pard =0

= fadcd v 3ard(pe? + P) =0



= //a({za -+ 39‘%((01* f)

5 cR J 7




Acceleration Cquation Devivation

start  with  Fried mann Equedion (q = B G-P ke
Enc- -
= 2% o 3 f a® - Kes

Ditterentiate wiH. resped % time:

(»f/&é’ T (TE EEpga) - O

Aywem\lt _ . o
) = %é'/faa—r Rpa d )

. [u,,( 6 e&toh
Plufs )Cluld Q.Zucvf}fon n % F z'u )

. F+ 3% (p+ f’) o
as 'TG' 35&-((94- f)q?. + ,Qfaa—] ::>f. = - 3_5;,__(",‘__2_)
< o
- : = 8 G- P -y
> 24 9 [yapy el 4 apas

= hak = TG

|4 Lo laaar - o
T a [;‘(‘Z‘o\jl< __L)(‘Dao, o gqq




Reclshitt _ Derivation | 2= &

Begin  with  tfhe ROW+SOM'W°¢[Z<€V Medric &
As* = _crdtd 4 2@ [ drd
7- kyd

i?jj p/a,ooaaj'/on Obeys ods =) <U74;§ fravels no cjisf‘MQ in
Spate-tme s

R

+ R (JO%+ sin2@ op ")]

<at | ,
Wa 790/(7* Xl 'ﬁmgl ~L€ {;g,',tfs

= dB = s =
- T 1 dr
Now we have the RW metic a$ = O = -t +c8(é)/.._z-,. ot

n SfGce <cre czou'vc(/%f ) |

W ith He N\Df‘ons arp vl P ¢ as t, m)
sndd it emicion Hme cs 4o Sqrt 8.5 |
we Cedn write t = eolt = al)dr
A ’

' Co;qa}a/e" =8 /;W V“y &maff-{d i to . 1~ kyR
. J dt
te

Q ;’£DV+
Heresore
@ é;{.

teved foe, g = | _er
B Seam—

7‘,2_ +0{ée o wriv/»y " om

/Qf'e,r fﬂo P 6@*% bg'l"aé@

> e
C.j
o}

|

e

a(t)
E%M/ﬂj éo‘H«g Teoo 1 J(ej,rals - fe fa(fz l\lf‘ k2 -t
= to ‘Jéo to +4-b°
j “‘"& = ol "“e."' d'é{
g2 «ct) = —ZL”‘ = o+
e - Tearron ale :——“
te telte /"""’fsﬂ ¢, e ¢)

M‘LM iheg N %ege_ & %f"ﬁ
, “€ caun fa/fczag‘)‘]fn //aﬂ: e £ < c{é

If  wae assume. adt) i

Skl tote, o f,

MW }.{4@ Q;e/gefa}t ya7§
ac’:)‘u«lly jqccegs;\lc cres [
I wave S )

I"'Mai/rg ofe i _ /‘
&= Zobs - '{e'ﬂ . /\ok _
of ?/'.4}‘,‘(( e Ae':””* = 1 ,
tua betwaen =’/Z+f_ z.’_‘i.:.dio~deo
A AL oc clt) | Pexrvans'ng Con A




On the Geometry of the Universe
Introduction

The Metric describes the physical distance between points, and is used to
understand distances.

Begin with our knowledge on the distance ds between two points on a flat surface,
given by Pythagoras’s Theorem:  ds? = dx? + dx2, where dx; and dx, are the
separations in the x; and x2 coordinates.
If space is expanding, we then have the scale factor such that

ds? = a(t)(dx? + dx2),
In general relativity however we are concerned with not only the spatial distance
between points but the distance between points in four-dimensional space-time
(which may also be curved).

Thus, we can write the distance as:

ds? = Z guvdx* dx”
uyv
where g,, is the metric (i.e. the geometry of space-time is specified by this), x4 and
v are indices from 0 to 4, in which x? is the time coordinate, and the rest are the
three special coordinates.

The metric comes as a solution from Einstein’s Field Equations. One such solution—
particularly important to cosmology—is the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric. This results by imposing the cosmological principle and
including the possible curvatures.

(FLRW) metric:

dr?
1-kr?

dSZ = —Czdtz + az (t) [ + Tz(dgz + SiIl2 0 d¢2)] *Derivation separate page

Before I will explain the Einstein’s Field Equations, 1 believe it would appropriate to
cover at least some of the basics mathematics that apply to it, most importantly—
tensors. [ will begin with their predecessor: vectors.

On Four-Vectors

A four-vector is another mathematical object with four components, which follows
specific rules when a Lorentz transformation is applied to it.
We can define the space-time four-vector as x#,u = 0,1, 2,3 as:



ct

x% = ct; x1 = x; x? = y; x3 = z; Or in other notation as: R=1|"*
y
z
We can define the energy-momentum four-vector p#,u = 0,1, 2, 3 as:
E
: : = c
p° = E; p' = pyc; p* = pyc; p* = p,¢; Or in other notation as: P = zxc
y
pz€

The Lorentz Transformation of the Four-vectors appears in matrix form as:

yct — Byx E YE — BypxC
X ,Byct +¥x [ and |P*¢| = —BYE +pxc where = Zandy = ! =
y pyc pyC ¢ 1-2
Z pZC pZC ¢

or in another way as:
= y(x® = Bx'); 2V = y(x! = px°); x* =x%; 2% = x
These can be written more compactly as:

=Y3_,A x¥,u=0,1,2,3 and the coefficient A, is simply the elements of the
matrix A:

Y —yB0 0
A={TIP Y 00N (5ot = y; ab = 02— By 13 = A3 = 1)
0 0 01

Einstein Summation Convention says that repeating indices (occurring twice as a
subscript, twice as a superscript, or once as a subscript and once as a superscript)
will be summed from 0 to 3., thereby avoiding writing a lot of sigma’s. So we can
write in a “new” way as:

x# = AP xY

When changing from one coordinate system to another, there are a few of the x*'
which do not change. This quantity is an invariant (as it does not vary under the
transformation, for example as r? = x? + y? + z? is invariant under rotations):

I = (xO)Z + (xl)z + (x2)2 + (x3)2 — (xOI)Z + (xll)z + (xZI)Z + (x3l)2
Because of the minus signs we can introduce the metric g,,,, as a matrix:

10 0 0
~[o=1 0 o0
9=10 0 -1 0

00 0-1

Thus the diag(1,—1,—1,-1) = diag (goo, 911, 922> 933)-



The four-vector we were discussing is defined more specifically as the contravariant
four-vector. We can introduce the Covariant Four-Vector by defining it as:

— . — 40 — 1 — 2 — 3
Xy = GuX'; (X = x7, %1 = =X, x; = —X%, X3 = —X°).
So the covariant vector is obtained by switching the signs of the contravariant
vector.

Covariant components Contravariant components Covariant componen{s Contravariant componénts
’ ’
/ /

v,
y)’

The above images shows how the vectors start from the same positions but move differently as they
transform. The covariant makes an arc-shape with the v, component while vy component remains
unchanged while the contravariant has both components moving straight across with each
component moving opposite to one another.

To clarify this means that the difference between the two is that the contravariant
vector (usually simply called vector) transforms opposite to how the basis vectors
transforms while the covariant vector (also called dual vector) will transform just
like the basis vectors. I imagine it as if [ were to point my arm in front of me and
rotate left keeping my arm in front of me my arm will rotate in the same direction
(i.e. covariant) but if | were to leave my arm pointing in the same direction but turn
my body right independently from my arm, then my arm “rotates” in the opposite
direction (contravariant).

{See Contravariant and Covariant Tensors}

On Tensors

The tensor a mathematical objects which succeed our understanding of scalars,
vectors, and matrices. They are generalizations of these quantities. The scalar is a
quantity that remains invariant under rotations of a coordinate system and so can
be represented by a single real number. The vector is a quantity that can be
specified by multiple real numbers, which represent the dimension of the
coordinate system, with the components transforming, like the coordinates of a
fixed point when the coordinate system is rotated. The scalars can be called tensors
of rank 0, while vectors can be called tensors of rank 1.



Visualizations of Tensors:

Rank 0: |:| Rank 1: EEEED

(scalar) (vector)

Rank 2: (matrix) Rank 3:
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(rank 0) (rank 1) (rank 2) (rank 3)
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Scalar Vector Matrix Tensor
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A tensor of rank of rank n in a d-dimensional space has two important properties:
1. Ithas nindices. Each index goes from 1 to d, thus having d” total components.
2. These components transform in a specific way when applying a coordinate
transformation.

Another way to explain tensors is as follows:

Let there be a vector A and a vector B in an isotropic medium. Let them be related by
vector equation A = kB for a constant k, with A and B having the same direction. If
the medium is isotropic then no matter which direction the vector points it will have
the same value. Thus, all around, the vector equation will be satisfied. If however,
the medium is not isotropic then the scalar k must be replaced with another
mathematical object that will change the magnitude and direction of the vector that
it is acting on. This object is the tensor.

Covariant & Contravariant Tensors

Since tensors are second rank vectors, we can represent it similar to the four vectors
but now they have two indices and two factors of lambda:

s# = ALAY s%9 ; will have 42 = 16 components as opposed to the vectors 41 = 4
components. And a tensor of rank 3 will have 43 = 64 components and with three
factors of lambda.



On Einstein’s Field Equations

Einstein’s Field Equations is a set of 16 partial differential equations that relate
matter and the geometry of space-time. They describe the gravitational effects
produced by a mass in the framework of relativity. Due to the symmetry of 7,
reduces the number of equations to 10. It is given below:

pw 1 __ 8mG
RV zRg!’Lv-I_Ang —_ C4' TMV *Perivation-separate page
Short description of each term:
C_Z.(energy) momentum
densi densit
The Stress-Energy Tensor (T,,) (or Energy- 4 /
Momentum tensor) tells you how the energy * A
(which includes entities with mass, T10 1 shear
momentum, pressure—everything is energy) is 20 2 stress
distributed in the universe. In other words, it T30 3 pressure

tells you the density and flux of the energy in
the universe.

momentum momentum
density flux

The Einstein Tensor (G, ) is a combination of a few terms that together describes the
physical geometry of spacetime. They work in the framework of Riemannian
Geometry (also called Elliptical Geometry). This geometry rejects Euclid’s V
postulate, which can be stated as Playfair’s
Axiom: In a plane, given a line and a point not
on it, at most one line parallel to the given line
can be drawn through the point. Riemannian
Geometry has no parallel lines and can
extend any straight line continuously without
bounds. It studies smooth spaces (called
manifolds).
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Riemann Curvature Tensor (R%) is the
most important term describing the
curvature of space. It tells you how

[]

matter will tend to converge or
diverge. If it is equal to zero, then
space-time is flat. In 4 dimensions, it
takes 20 numbers to specify the
curvature at each point. 10 of these
numbers are captured by the Ricci

Surface of negative Gaussian Curvature
(hyperboloid), zero Gaussian curvature (cylinder)
and positive Gaussian curvature (sphere). The
Riemann Curvature Tensor describes the
different curvatures in different directions.

tensor, while the other 10 are by another tensor called Weyl tensor.



The Ricci Curvature Scalar (R) is the simplest description of curvature but is
closely related to the Curvature tensor. It represents the amount by which
the volume of a geodesic ball in Riemannian manifold changes compared to a
ball in flat space.

The Cosmological Constant (A) is a term added to describe some kind of energy
(“vacuum energy”) in the universe, which drives its acceleration. This energy has
been called “dark energy” as it does not interact (only extremely rarely) with
regular energy forms and therefore difficult to observe.

The metric tensor (g,,) looks at the geometry of manifolds (i.e. space). The example
that was described earlier revealed that in the flat 2D case we have:

ds? = dx? + dx? = Yuv GuvdxH dxV with this case g, = (é (1))

(Christofell Symbols are calculated from the metric tensor!) (*Separate Page)
Geodesic

Another important concept that intimately ties in with general relativity and
Einstein’s Field Equations is the idea of the Geodesic. In simple terms, it is the path
that a particle travels by in spacetime. The straight line —the shortest possible
distance from one point to another in flat space—is equivalent to the geodesic in
curved spacetime.

SUMMARY

In summary, the Einstein Field Equations illustrate the behavior of
spacetime—with the Einstein tensor consisting of Riemann Tensor and Ricci scalar
describes the curvature and geometry of spacetime while the Stress-Energy Tensor
discusses the material and energy present in the universe. Each entity affects one
another. As famous physicist John Wheeler put it “Space-time tells matter how to
move; matter tells space-time how to curve”.

The solutions to the Einstein Field Equations are the components of the
metric tensor. The trajectories of the particles in this geometry are calculated using
the geodesic equation—which tells us how free-falling matter and energy moves
through spacetime. Together, these equations form the core and essence of The
Theory of General Relativity.
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Exploring Varying-G and A Cosmology

Yury Chernyak

Abstract

This paper explores an alternative idea that the physical constant G (gravitational constant)
is time-variant. By analyzing and studying compiled type la supernovae (SNe Ia) data and
their redshifts, I shall attempt to use this information in developing models in which gravity
varies in time as the universe evolves. The models, in which the strength of gravity must
increase over time, should fit well with the type Ia supernovae, however the bounds will not
be satisfied causing a failure of these models. The results will be analyzed and discussed,
and then an analysis will be carried out regarding the possibility of varying G in context
with General Relativity. I will discuss theoretical implications of this possibility that

includes the requirement of a varying A term (the constant in Einstein’s Field Equation).

I. Introduction

In 1998, two independent research teams—the High-Z team and the Supernova Cosmology
Project--independently determined that type la supernovae appear fainter than what was
expected leading them to conclude that the type Ia supernovae are further than expected
therefore the average rate of expansion of the universe must be greater than what has been
previously assumed. This results in today’s accepted hypothesis is that the universe is
accelerating, which is thought to be due to a form of energy known as dark energy—identified

with the cosmological constant from Einstein's Field Equations.



Einstein’s Field Equation:

| 8t G
Ruv _ER guv = A guv o T T

4 uv

Friedmann Equation:

a\? 8nG ki2 A

Bi=l—] ===
3 a 3

The standard model of cosmology has that k = 0 (representing a flat universe; k represents
spatial curvature) and A > 0. However, the current theory predicts A to be at least 10°° times the
observed value. I shall consider varying-G models by imposing the parameter that k = A = 0.
I begin creating a model with the Friedmann Equation (above) along with its associated
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,

_dr

2. . R
ds dt“+a“(t) —

+1* (d6* +sin* 0d¢?)

The Friedmann Equation describes the expansion of the Universe while the FLRW metric is an
exact solution to Einstein’s field equation describing the geometry of a homogenous and

isotropic universe (two main assumptions of cosmology). In these equations, a(?) is the
. . . . . d .
dimensionless scale factor, normalized so that ay(?) = 1 at present time t = ty, 4 = d—ctl , G is the

gravitational constant, p is the density of all forms of energy, r is the radial coordinate, c is the
speed of light (constant), and K is the spatial curvature.

Setting up the model, I will introduce the comoving distance and proper distance. Proper
distance is the distance measured in cosmology where a distant object would be at a specific

moment in time. This distance can change in time as a result of the expansion of the universe.



The comoving distance factors out the expansion of the universe and thus results in a distance

that does not change in time. In this project, I will be working with the comoving distance. It is

defined as: y = for \/ﬁ = sin~! % with the proper distance at time ¢ being d(?) = a(t)

(today they are equal since a(?y) = 1). The comoving distance equation inverted results in

sin(VKy)
= — % . .
'K {Problem A2.2 in Appendix}

I1. Supernovae Cosmology

The first problem in cosmology that must be tackled is being able to measure distances to
galaxies. I begin with a “standard candle”, that is, a source whose luminosity is known. The
most commonly used standard candles are the Type Ia Supernovae. A supernova is a very
gigantic explosion of a star in space. A type la supernova occurs in a binary system. There is
some star that exists in a gravitational system with a white dwarf (a small and very dense star,
which are regarded as the final state of the life of a star). What occurs is the matter of the star is
released and begins to accrete (i.e. accumulated) onto the white dwarf, until the white dwarf
becomes so dense that it goes over a limit (the Chandrasekhar limit) thereby causing a nuclear
burning (fusion) resulting in an explosion. To get an idea on how powerful a supernova of this
type is—such a supernovae will release more energy in weeks than the Sun does in 10 billion
years.

A. Luminosity Distance
The luminosity distance is the distance that an object appears to have (assuming a riz for
the reduction of light intensity with distance holds true). It is a way to express the
amount of light received from a distant object. Since the proper distance between two

points is space is too large for us to measure, cosmologists and astronomers gather the

data of the light received from a luminous object like a supernova and relate it to the



energy flux. They then use this to extrapolate information on the approximate distance

of the object—known as luminosity distance.

Energy flux = f = 4;2, where L is the objects luminosity (i.e. the rate of total energy

.. dE . . . .
emission L = E)' However, due to the expansion of the universe, the luminosity of an

object decreases by the factor (1 + z)?2, in which z is defined as the redshift. Redshift is

the phenomenon where energy emitted from an object has an increase in wavelength as
it travels through great distances in space. This is similar to the Doppler effect—the
changing of frequency of a wave in relation to an observer who is moving relative to

the source—applied to cosmology. Therefore, the corrected expression for flux is:

L L. . o . _
f= O~ A in which the luminosity distance is defined as d;, = (1 + 2)r.

B. Angular Diameter Distance
The angular diameter distance is defined as the distance that an object of known
physical size appears to be at assuming a Euclidean geometry of space. It is a measure
of how large objects appear to be. Similar to luminosity distance is that it too depends

on redshift, however has a different dependence. Its equation is given as follows:

AoTo
(1+2)

ddiam -

So this equation tells us that the size of objects looks bigger due to redshift and
therefore objects appear closer than what they really.
I1I. Varying-G Friedmann Equation
Using the parameter that K = A = 0 reduces the (dimensionless) Friedmann equation (below). I
shall assume that the Friedmann equation with this parameter of the universe will allow a G

that varies with time. This works however only as an approximation for the Friedmann



equation. This is because the Friedmann equation is derived from Einstein’s field equations,
which actually does not allow variations in G. To allow the possibility of a varying G, rivaling
theories such as scalar-tensor theories have been proposed. However I will discuss at the end of

the paper how it may be possible to vary-G in accordance with General Relativity.

My assumption will result in a modified Friedmann equation with a time-dependent G along
with additional terms of order g If these terms are small, I can ignore them such that the

Friedmann equation would become identical to the standard one but a time-varying G.

Let G(t) = Gyf(a), where G is today’s value and f{a) is a function describing the dependence
of G on the scale factor and therefore explaining how it has evolved in time.

Definitions & Constants

I discuss the meaning of these variables in Brief Summary of Cosmology (Pre-Thesis Section).
Def. 1 is the critical density of today—the mass of material in the universe per volume when
the universe is flat (k = 0). Cosmologists relate the density of different materials (py, P, Pr—
dark energy, matter, and radiation, respectively), to this critical density value, which is
represented by the omega terms ((2,, (1,,). Def. 6 represent today’s omega value, which takes
into account matter and dark energy (radiation is considered an important quantity earlier in the
universe’s history but not so much today—we say that today is a “matter dominated” universe).
But since we consider the parameter that A = 0, we result with Q, = 0 and therefore Def. 6

results in Qg = Q0 = 1.

2 2
Def. 1: poo = - Def. 2: py = 2 Def. 3: 0, = 2
Def. 4: 0, = - Def. 5: 0, = 720 ; 00 ~ 1 Def. 6: Oy = Q,, + O,
c,0

Ao

Def. 7: z = - (Redshift)



Const. 1: Q, =0 Const. 3: G, = 6.672 x 10711 m3kg~!sec™?!
Const. 2: O, = 1 Const. 4: ¢ = 2.998 X 108 m sec™?!

The dimensionless Friedmann Equations can be written as:
H? = (%) = H2[ Qp(a) + (1 — Qa2 + Q,] With —Kc?2 = HZ(1 - Q)

This results in:

( ) lfl‘l'z da
r(z) = cH
° 0 a2\/ Q(a) + (1 —-Qya?+ Q,

t(a) = H' f ) da
0 o afan(@ + (1 — Qa2+,

The result is similar when I include the varying G-component in the dimensionless Friedmann

Equation. The results become:

( ) B CH—1 f1+z da
me = e )] a2\Jf(@) Qn(@) + (1 — Qg)a 2 + O,
I da
ta) = Hs fo a/F(@ Q@) + A= Qa2 + O,

These are the modified Friedman equation with a time-varying G, whose influence is found in
the function f(a).
IV. Varying-G Models

I take two of the models from Dungan and Prosper paper that fit the supernova data.

2z
(1+e-b@a-1))

Model 1: f(a) = e?@ D  and  Model 2: f(a) =

Where b is a dimensionless and adjustable parameter.



The supernova data, which was Sor ' ' o
taken from Kowalski, is presented i ]
45— -
on the right: i ]
.. . i o Hamuy et al. (1996) |
The y-axis is called distance - | funas 7
= 40 " Riess et al. (1996)
- F .
modulus. This is closely related to - 2 This Work
: 31; Perlmutter et al. (1299)
the concepts of luminosity distance 3L # B
- 1 Knop et al. (2003)
discussed earlier. It is defined as: _ Astier et al, (2006)
B Miknaitis et al. (2007)
d 30 1 1 1 1 1 I R
_ L 0.0 1.0
dmoa = 5 log (—10_5) Redshift

I plug in and evaluate model I into the modified Friedmann Equations to get:

*Reminder: Q,, = 222 ; 0 0~ 0.3; Qy=0; Q= 1

a3

The Comoving Distance:

1
L da 20m bx
r(z) = cH;?! ~ = cH;?! (eb/z —erf( —))l
B S e i R T N D V)
-1
— £ pb/2 /20_” Ierf<\/g>_erf< ’M)l
Ho 3b 2 2

The Universal Time:

a

-ba b
t(a) = cHyt foa d = CHO—1< ’20_” eb/2 erf ’b_a _9 /w—ae(T+5)>/b
a /eb(a‘l)(a—g)+0+0 3b 2 3

Model 2 integral can only be evaluated numerically using numerical methods of

approximation.

The model 1 fit will give a value b = 2.09 + 0.08 when fitted onto the supernova data. This

model is evaluated to give a universal time of t, = 15.1 X 10° years. For model 2, b = 3.27 +

0.11 and t, ~ 16.2 x 10° years.

The bounds are discussed in the next section.

2.0



V. Experimental Values and Limits of varying-G Universe

When comparing the calculated predictions with observational data I find that despite the fits
to the supernova with these models, it does not satisfy the bounds. These models predict a
different age of the universe (model 1 being 15.1 billion) compared to the currently accepted

value of approximately 13.8 billion years old.

In the paper by Dungan and Prosper which I am following, they characterize g in terms of the

logarithmic derivative of the function f'(a): % = %Z—Z a=H, % in which they find that

g = 1.5 X 107 %r~! when f(a) = e?@V andg = 1.15 X 107 %yr~1 when f(a) =

2

Lreb@ D) When comparing these results to the ones in the table below, we can see that the

bounds of model 1 and model 2 are one to three orders of magnitude larger than the upper
bounds found in other experimental-values.
These results (from other authors) have been deduced from supernovae data as well as other

methods. Most notable experimental results are:
* Gaztanaga et al. (2001) finds that the g < 10~ yr-1 at redshifts of z~ 0.5 when

looking at the correlation between nickel synthesis in the outbursts and luminosity.

* Verbiest et al. (2008) measured orbital period rates of pulsars and set a limit of
G — —-12 -1
i 23 X107 *“yr
* Corsico et al. (2013) conclude a white pulsation limit of g = —1.3x 10 11ypr-1
* Opverall the current supernovae data (Suzuki et al. 2012) with ACDM cosmology

concludes a range of limit ofg = (—3,+7.3) x 107 1yr-1t



Other limits based on other aspects of study are summarized in the table below:

Table 1. Values of e and 3 for average G /G when tg = 14 Gyr, Q,,, = 0.3, 2y = 0.7
and 2 ~ 0
Ranges of /G yr™! Sources o 8
—(1.10£1.07) x 10" < :- <0 PSR 1913 + 16({ Damouretal . 1988) 00852 04074
~1.60 x 1071% < ﬁ— <0 Hehioseismological data (Guenther et al, 1998) 00115 0.0670
(—1.30 = 2.70) x 10~ 1 PSR B1855409 (Arzoumanian 1995; Kaspi, Taylor & Ryba 1994)  -0.1023 0.4698
(-8 +35) x 1071 Lunar occultation (Van Flandern 1975) -1.333 1.6
(—6.4+22) x 1071 Lunar tidal acceleration (Van Flandern 1975) 08421 14228
~15.30 x 10~ 11 Early Dirac theory (Blake 1978) 11.7692  2.0582
~51x 10" Additive creation theory (Blake 1978) 0S730 12644
~16 4+ 11) x 107 Multiplication creation theory (Faulkner 1976) 800 20869
~25x107"7 £ £ £ 440x 107" WDG 117-B15A (Benvenuto ct al. 2004) a0 1.8
{: < 4410 x 107 WDG 117-B15A [18] 1.1319 3.09
—(0.6 £4.2) x 10717 Double-neutron star binaries (Thorsett 1996) -0.0042 0.0254
(0.46 £ 1.0) x 107 *# Lunar Laser Ranging (Turyshev et al. 2003) 00318  -02110
1x 10 =1 Wu and Wang (1986) 0.0666 0.5

(Ray & Mukhopadhyay, 2018)

VI. Discussion, Analysis and Varying-A possibility

I mentioned earlier in this paper that varying-G was not possible in Einstein’s Field Equation’s.
Therefore, this paper makes the wrong assumption by not taking this important fact into
account. However exploring further, we have the idea that solving the Bianchi Identities—a
specific covariant derivative of the Riemann Tensor in which it equals zero—would result in a
fluid equation that includes a varying-G component. Moreover, the varying-G fluid equation
must include a varying-A term in order to make sense. In other words a varying-G would imply
a varying-lambda. If this were the case, General Relativity would incorporate both terms as
time-variant and avoid the issue of breaking the law of conservation of energy.

Bianchi Identities:
vcr Ra-j}u; + V[;Rajap 4 Vp Ra-j[/a = O

in which the covariant derivative of the Riemann Tensor is:



R, I = [(.} '.:(.};[.‘_/M'l + OOy in — (.)ﬂ(.)rr.‘]u;r - (.)('.(.);(.(_ljp_

B | —

In other words, this is when the Einstein Tensor is set equal to zero —  V,G" =10
These can be solved using the same Christoffell Symbols that I had been working with when
deriving the FLRW metric. *{See Derivations in Appendix}

Fluid Equation:
The Fluid Equation looks as follows: f +3%(p +2) = 0

However incorporating the varying-G and varying- A results in the fluid equation below:

. a p G Ac? : 8nG
3—( —) Yo+ 2C o, _ o
p+ p p+C2 +Gp+ - > A

VII. Summary

Paul Dirac first suggested the idea of a variable G in 1937. Cosmological theories
incorporating this idea had been developed a few decades later such as Brans-Dicke theory
(1961) in which [¢p(t)]~! o G(t) where the former part is the scaler field and is increasing in
time (this is a scalar tensor theory—an inferior challenger to the Theory of General Relativity),
Hoyle-Narlikar theory (1972), and the theory of Dirac (1973). These theories viewed a
gravitational constant to have decreased with time.
In order for this idea to function, it must be in accordance with the Theory of General
Relativity as well as the Theory of an Expanding Universe. This has been shown for the former
with the three theories mentioned above, as well as the theory of an expanding universe in
which G/G = oH,. Furthermore, superstring theory allows G to be a varying quantity
(Marciano 1984).

Experimentally, a varying-G is supported by results from Lunar Laser Ranging



(Turyshev et al. 2003), spinning rate of pulsars (Arzoumanian 1995; Kaspi, Taylor & Ryba
1994; Stairs 2003), Viking Lander (Hellings 1987; Reasem- berg 1983), distant Type Ia
supernova observation (Gaztanaga et al. 2002), Helioseismological data (Guenther et al. 1998),

white dwarf G117-B15A (Biesiada & Malec 2004; Benvenuto et al. 2004).

However, this paper explored models in which the strength of gravity increases over
time found that these models fit the type Ia supernova however were not consistent with the
experimental data. This was perhaps a result because the Dungan & Prosper paper did not
consider varying-lambda possibilities. Perhaps with different models of f (a) and incorporating
lambda, a different result may be obtained that would allow the formulation of a varying-G and

a varying- A theory in cosmology.

VII. Comments on this Project

I had many challenges throughout the course of this project however I learned a lot as well. I
was able to improve my skills in coding by incorporating the python program in this project. I
had a much better understanding of General Relativity and Cosmology regarding both the
physical understanding and the mathematics behind the physical interpretations. And I also
acquired skills in breaking down a big problem into small components and organizing the
various tasks at hand. The next steps in this project would be to solve the Bianchi Identities to
see if the fluid equation would indeed result in the varying lambda and varying-G terms.
Furthermore I would develop new models of f{a), that is, fits to the supernova data
incorporating varying-G. And I would incorporate the lambda term (that varies) in those
modified Friedmann equations as well (and solve the resulting #(a) and r(z)). Lastly, I would

consider the possibilities of different curvatures and different lambda combinations.

THE END




Appendix

Derivations, Code, & Problems



On Luminosity and Distances

The cosmology metric—Robertson-Walker Metric shows the path flow in space-
time. When discussing light propagation, the metric will represent this with ds? = 0,
as light will travel no distance in space-time. From this fact, we derived the redshift
formula (separate page*).

Now I will present two other important quantities for deriving distances in
cosmology: luminosity distance and angular diameter distance.

Luminosity Distance

This is defined as the distance that an object appears to be, assuming an inverse-
square law (1/72). However the universe does not need to follow this law as the
geometry of the universe does not need to be flat (fortunately our observations
indicate that it is, so no need to worry about this) and that our universe is
expanding. As a consequence of the latter, we find that each individual photon loses
energy « (1 + z) and photons have less frequency also « (1 + z).

Now we define luminosity L of an object as the energy emitted per unit solid angle
per second. The radiation flux density S received by us from the object is defined as
the energy per unit area per second.

So the luminosity distance is: d,,, = % with L/S being the unit area per unit solid
angle.

The image below demonstrates this:

The light reaches us a distance of a7, but the
surface area at that point is 4wa3rg. Thus the

radiation flux will be § = L /azrz but taking
070

into account the consequences of the
expanding universe, we must then add two
factors of the scale factor a = (1+z).
Therefore, the more accurate radiation flux is:
L
— aZi?(1 + 2)?

Thus, di,, = agro(1 + 2)

What this physically means is that objects
appear further than what they really are
because of that redshift effect, causing them to
appear dimmer.




Anguiar Scalekpe™

Angular Diameter Distance

The angular diameter distance is the distance that an object appears to be at and

tells you how large the object appears to be.
[t is given by the formula: d ;4 = @ = é where [ is the known diameter/size of

object, theta is the angle measured and dgiam is the distance between you and the
object (i.e. how far away it is).

Now we have the physical size [ is:

= (a,ry) db
(a,) Is the scale factor at the time emitted
AeTo
Which becomes:
l l(1+z
40 = _ U )
ATy AoTy

Where the (1 + z) factor accounts for the scale factor between emission time of light
and present time.
Plugging the result of df into d;,,, for 8 we arrive at the formula:

AoTo
(1+2)

Angular diameter distance: d 4;qm =

The physical meaning of this is that objects appear closer than what they really are
and the size of objects look bigger because of redshifts.

In summary, close objects in space act as they would expect but going further out is
when objects appear strange as the distant objects appear to be closer than what
they really are. Those further objects are also dimmer (as the luminosity formula
shows) and appear bigger (as the diameter formula shows that the angle gets larger
making it seem that they spread over more space).

Their diagrams look as follows (which I had to replicate using Python):
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Python Code

I wrote the code below which results in the following graphs representing Luminosity

Distance and Angular Diameter Distance, both as functions of redshifts.

from scipy.integrate import gquad

#FOR OMEGA = 1

def r(z):
cHo = 3000
omega = 1
integral = (cHo)*(l-omegatomega*(l+z)**3)**(-0.5)
return integral

#contains all z values
#this is the list that will contain all
#r o values corresponding to z from 0.5 to 10

z_values = []
rd_wvalues = []

z=10

while z <= 5:
i, error = quad(r, 0, z)
r0 wvalues.append(i)
z += 0.1
z_values.append(z)

#z values go from 0.5 to 10 by 0.5 increments
#evaluatesS r(z) from 0-z,1i = integral result
#each i is a r_o value

d=1]

for i in range(len(r0_wvalues)):
d diam = r0_values(i]/(l+(z_values[i]))
d.append(d_diam)

#FFOR OMEGA = 0.3
def r2(z):
cHo = 3000
omega = 0.3
integral = (cHo)*(l-omegatomega*(l+z)**3)**(-0.5)
return integral

rd_wvalues_2 = []
z values 2 = []

z=10
while z <= 5:
i, error = quad(r2, 0, z)
r0_values_2.append(i)
z += 0.1
_values_2.append{z)

L]

a2 =[]
for i in range({len(r0 wvalues 2}):
d diam = r0_values_2[i]/(1+(z_values_2[i]))
d 2.append{d diam)
Code continues on the right =»
F=======PLOTTING LUMINOSITIES================
1l =[] #luminosity values
for i in range({len(r0 values)):
d lum = r0 values[i]*(l+(z_values[i]})
l.append(d lum)
12 =) #luminosity values
for i in range(len(r0 values 2)):
d lum = r0 values 2[i]*(l+{z_values_2[(i]))
1l 2.append{d lum)
13 =() #luminosity values
for in range(len(r0 values 3)):

lum = r0_values
_3.append({d_lum)

3[(i)*(1+(z_values_3[i]))

-

Continued Code on the right =»

#FFOR OMEGA = 0.5
def r3(z):
cHo = 3000
omega = 0.5
integral = (cHo)*(l-omegat+omega~*(l+z)**3)**(-0.5)
return integral

r0 wvalues 3 = []
z values 3 = []

z =0

while z <= 5:
i, error = quad(r3, 0, z)
r0_walues_3.append(i)
#print(i)
z += 0.1
z values 3.append(z)

d 3
for

[

in range(len(r0 values 3)):

diam = r0_wvalues_3(i]/(1+(z_wvalues_3[(i]))
3.append{(d diam)

(= ="}

import matplotlib.pyplot as plt
import numpy as np

x = z_values

y =4d

x2 = z values 2
¥y2 =d_2

x3 = z_values_3
y3 =d3

w =12

h=29

d =70
plt.figure(figsize=(w, h))
plt.plot(x, y)
plt.plot(x2, y2)
plt.plot(x3, y3)
plt.xscale( 'log')

#plt.yscale("log’)
plt.grid[Trub)

plt.title( 'Diameter as function of redshift')
plt.xlabel('z")
plt.ylabel('d diam (h"-1 Mpc)")

plt.legend(('2 = 1','2 = 0.3"', '0=0.5"), loc='upper left')

import matplotlib.pyplot as plt
w =12

h=9

d =70

plt.figure(figsize=(w, h))

luml = z values
luml = 1

lum2
lum2
lum3
lum3

values 2
2
values 3
3

MM KX

z
1
z
1

plt.xscale('log')
plt.yscale('log')
plt.plot(x luml, y luml)
plt.plot(x lum2, y lum2)
plt.plot(x lum3, y lum3)

plt.title( 'Luminosity as function of redshift')
plt.xlabel{'z")

plt.ylabel('d lum (h"-1 Mpc)')
plt.legend(['n2 = 1','R = 0.3,

‘n=0.5"'], loc='upper left')



Python Graphs

Luminosity as function of redshift
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Set of Problems

Problem 7.5

3
Show that in a spatially-flat matter-dominated cosmology the density parameter evolves as: Q(z) = Q, %
—240 0

If our universe has Qg = 0.3, at what redshift did it begin accelerating?

Problem A2.2

The present physical distance from the origin to an object at radial coordinate 1y is given by integrating ds at fixed time:

o dr
dphys = Qo f
phy o V1 —kr?
Evaluate this.
Find an expression for dyy;, in terms of dppys and z.

Problem A2.4

Demonstrate that for spatially-flat matter-dominated cosmologies with a cosmological constant the Friedmann equation can be
written as:

H?%(z) = HE[1—-Qy + Qo(1 +2)%]
Use this to show that for spatially-flat cosmologies:

— H—l fz dZ
0= Mo ) TT—Qp + Qo(1 + 2)3]172

Bearing in mind that cHy ' = 3000h~ Mpc, derive formulae for the luminosity and angular diameter distances as a function of
redshift for the special case Qg = 1. Solve this equation numerically to obtain curves for Qg = 0.3 as shown below:
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Other Derivations/ Extra

Friedmann Equation using Newtonian Method
Acceleration Equation

Fluid Equation

Redshift

FLRW Metric

Christofell Symbols

Bianchi Identities

NS R W~

+ On Geometry of Universe, On Luminosity & Distances, Summary of Cosmology Documents

(Solutions are on Separate Scanned Pages)
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